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Cross-fertilizing aquatic and
terrestrial research to understand

predator risk effects
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Research that conceptually transcends boundaries between aquatic and terrestrial
ecosystems has a long history of increasing insight into ecology and evolution.
To stimulate further cross-fertilization between studies that focus on different
ecosystems, we highlight several insights on risk effects—the costs of antipredator
behavior—that have emerged in part because of combined advances in aquatic
and terrestrial systems. Namely, risk effects (1) are not restricted to structured
landscapes where antipredator behavior is easily measurable, (2) can be substantial
even when prey experience very low predation rates, (3) are contingent on a
three-way interaction between the hunting mode of the predator, escape tactic
of the prey, and features of the landscape/physical environment, and (4) can
interact with direct predation (consumption) and resource availability (through its
effects on prey energy state) to control consumer population size. We conclude by
highlighting the value of exploring differences between aquatic and terrestrial risk
effects and offering a prospectus for future studies of antipredator behavior and its
ecological importance in both eco-domains. © 2014 Wiley Periodicals, Inc.
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G. C. Williams, originator of the theory of fish
schooling that I am here supporting (Williams, 1964,
1966) points out that schooling is particularly evident
in the fish that inhabit open waters. This fits with
the view that schooling is similar to cover-seeking
in its motivation. His experiments showed that fish
species whose normal environment afforded cover in
the form of weeds and rocks had generally less marked
schooling tendencies. Among mammals, similarly, the
most gregarious species are inhabitants of open grassy
plains rather than of forest (Hesse, Allee & Schmidt,
1937). With fish schools observers have noted the
apparent uneasiness of the outside fish and their
eagerness for an opportunity to bury themselves in
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the throng (Springer, 1957) and a parallel to this is
commonly seen in the behaviour of the hindmost sheep
that a sheepdog has driven into an enclosure: such
sheep try to butt or to jump their way into the close
packed ranks in front. Behaviour of this kind certainly
cannot be regarded as showing an unselfish concern
for the welfare of the whole group.

—W. D. Hamilton (1971)

INTRODUCTION

ross-fertilization of research in freshwater,

marine, and terrestrial ecosystems has a long his-
tory of increasing insight into ecology and evolution
that goes back to at least Darwin and his contem-
poraries. Hamilton’s! work on the geometry of the
selfish herd provides a case in point. As illustrated by
the 43-year-old quotation opening this essay, observa-
tions from both marine fish and ungulates inspired his
ground-breaking insights on the antipredator benefits
of group living. Moreover, cross-fertilization between
aquatic and terrestrial eco-domains continues to
advance modern ecology.>™* For example, removal
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experiments aimed at testing the effects of particular
species on community interactions were employed
first by marine and freshwater ecologists but now
are applied widely to terrestrial food webs.>® The
metabolic theory of ecology,” which predicts organ-
ismal responses to environmental change, diffused in
the opposite direction.® Behavioral ecologists have
also benefited greatly from cross-ecosystem com-
parisons. For instance, comparative studies between
odontocete cetaceans and primates have yielded gen-
eral insights into the function of coalitions and other
social behaviors (e.g., Ref 9). Despite these examples,
however, ecologists often underutilize the potential
benefits of thinking outside the confines of a particular
eco-domain.*10-13

Research into predator risk effects illustrates
how removing conceptual boundaries across freshwa-
ter, marine, and terrestrial domains can strengthen
ecological insights. Risk effects are the nonconsump-
tive effects of predators on prey, namely the lost
foraging opportunities and lower levels of growth
and reproduction experienced by prey investing in
antipredator behavior. These effects are increasingly
recognized for their potential to influence prey pop-
ulations, community organization, and ecosystem
dynamics.'~!” This growth of interest in risk effects
owes much to cross-fertilization between laboratory
and mesocosm studies in different ecosystems (e.g.,
Ref 20). Our experience is, however, that many ecolo-
gists studying large-bodied taxa (e.g., ungulates) under
natural field conditions often are unaware of research
on risk effects outside of their eco-domains. Such
insular ecology arguably has limited understanding of
the ecological role of large vertebrates in general and
marine ones in particular.!821723 Here, we synthesize
insights arising from cross-fertilization of aquatic and
terrestrial studies on the ecological consequences of
antipredator behavior, highlight the value of studying
how risk effects might differ in these two environ-
ments, and provide a prospectus for future work.

THE SCOPE OF ANTIPREDATOR
BEHAVIOR

There is a growing effort to elucidate the conse-
quences of risk effects for community properties.
This effort has primarily entailed the use of meso-
cosm experiments (e.g., see Ref 20 for a review) or
fieldwork in aquatic and terrestrial systems where,
from the researcher’s perspective, well-defined land-
scape structures (i.e., patchiness) facilitate measures
of variability in antipredator behavior (e.g., habitat
shifts and use of refugia,>* and giving-up densities'?).
Moreover, it has focused largely on invertebrate
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or small-bodied herbivores that are amenable to
experimentation?® and that may experience high pre-
dation rates. In contrast, risk effects are less studied
where spatial structure (patchiness) is less definable
(e.g., pelagic marine systems>®?”) or where the prey
assemblage is composed of large-bodied marine meso-
predators or herbivores that, perhaps owing to high
investment in antipredator behavior, can have low
predation rates.??

In patchy landscapes, which characterize many
terrestrial ecosystems and littoral and benthic zones
within aquatic ecosystems, it is well documented
that prey individuals often respond to predation risk
by shifting to safer habitats or by increasing vigi-
lance. These responses carry the cost of lower for-
aging rates or reduced access to resources'>?* and,
at least in risky patches, may also transmit positive
indirect relationships between predators and species
eaten by mesoconsumers [i.e., trait-mediated trophic
cascades, which include behavior-mediated trophic
cascades (BMTC)'¢]. Habitat shifts in response to
predation risk are more difficult to document and
often go unrecognized in pelagic habitats of the ocean
and in limnetic and profundal zones of freshwater
systems, which are less discrete, yet such shifts cer-
tainly occur. For example, one of the largest migra-
tions of biomass on the planet—the downward move-
ment of zooplankton to deep strata during daylight
hours and then back to surface waters at night (diel
vertical migration, DVM)—appears to be driven by
risk from visually orienting fish predators that hunt
near the surface during the day.?®?° Similar patterns
of predator-induced DVM have been documented in
freshwater planktivores.>® Given the pervasiveness of
DVM, does the paucity of evidence for open-water
habitat shifts in response to predation risk reflect a
lack of looking by researchers rather than the implau-
sibility of these behaviors??” Answering this ques-
tion will, in our view, be expedited by two develop-
ments. First, recognizing that open-water systems are,
in fact, structured in a way that can facilitate spatial
shifts (e.g., in terms of oceanic fronts and plankton
patches3!), should allow ecologists to become more
aware that risk effects are plausible in these systems.
Further—as illustrated by the quotation opening this
essay—aquatic species in open water can also effec-
tively create patchiness by schooling.! Large schools of
fish, for instance, effectively represent patches offering
heightened safety (e.g., via predator detection, con-
fusion, and/or risk dilution) and within which dan-
ger can vary as a function of group position. This
idea appears to apply in riverine ecosystems as well.
For example, Orpwood et al.>? showed that European
minnows (Phoxinus phoxinus) in seminatural stream
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channels formed larger shoals in response to predation
risk, but only in structurally simple habitats. Second,
risk-induced shifts already are well documented in
many systems where researchers can define landscape
structure more easily. Awareness of that evidence
should remove conceptual barriers for testing the plau-
sibility of similar behaviors in the more subtle patchi-
ness of open-water systems. For example, experiments
in old-field meadows found that grasshoppers at risk
of predation from spiders avoided the bottom strata
of vegetation—where dangerous spiders and preferred
food were most abundant—and increased use of the
safer but food-poorer canopy.>> These experiments
inspired behavioral models for pinnipeds (i.e., large
marine mesopredators) under risk of predation by
deep-water sharks. Similar to the spider—grasshopper
system, these models predicted that pinnipeds would
optimize risk-energy trade-offs by avoiding more
dangerous and food-richer deep strata and instead
foraging more safely (at a feeding cost) in shal-
lower strata®*33; empirical data provided preliminary
support for these predictions.®® Similarly, Kramer3®
was inspired by the application of the marginal
value theorem3” to patch-leaving decisions by bees to
develop one of the earliest models of the optimal dive
cycle by air-breathing foragers (e.g., sea turtles, diving
ducks, and marine mammals). Kramer’s work, in turn,
led to optimal dive cycle models that incorporated pre-
dation risk3® based on the u/g rule—a theory inspired
by freshwater fishes which predicts that foragers min-
imize the ratio of predation risk experienced to unit of
energy gained.?’

In the mid-1990s, there was little appreciation
for the possibility that large-bodied marine herbi-
vores (sea cows and sea turtles) and mesopredators
(e.g., cetaceans and pinnipeds), which have low pre-
dation rates in many areas, respond to predation
risk by shifting foraging habitats.?> At the time, our
research on antipredator responses by large marine
consumers in Shark Bay, Australia, was motivated
instead by field research from the terrestrial realm
documenting risk-induced behavioral adjustments by
large-bodied species, including upper trophic-level
predators (painted dogs, Lycaon pictus*), herbi-
vores (wildebeest, Connochaetes taurinus*'), and
primates (baboons, Papio cynocephalus ursinus*?).
Using the ideal-free distribution framework, which
was developed initially for understanding the use of
reproductive resources by birds,*> we have inferred
how spatiotemporal variation in the risk of predation
from tiger sharks (Galeocerdo cuvier) affects four
long-lived marine mesopredators—Indian Ocean bot-
tlenose dolphins (Tursiops aduncus**), olive-headed
sea snakes (Disteria major®’), bar-bellied sea snakes
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(Hydrophis elegans*®), and pied cormorants (Pha-
lacrocorax varius®') (see Ref 47 for a review). All of
these mesopredators trade food for safety by shifting
into food-poor but safe habitats when threatened with
shark predation. Large marine herbivores in this sys-
tem also show marked risk sensitivity despite rarely
succumbing to predation. For example, dugongs
(Dugong dugon) in Shark Bay sacrifice food (sea-
grass) for safety by shifting from seagrass patches
into deep water where seagrass is scarce,*® avoiding
the interior portions of seagrass meadows where
access to safe deep water is reduced,*’ avoiding the
use of a profitable foraging tactic—seagrass rhizome
excavation—that constrains vigilance,*® and by alter-
ing their dive cycles’’ when confronted with tiger
shark predation risk. Recent evidence from whales
further challenges the idea that risk-induced spatial
shifts, and other forms of antipredator behavior, are
restricted to small-bodied aquatic species that suffer
heavy predation rates. Specifically, Curé et al.’? found
that sperm whales (Physeter macrocephalus) interrupt
foraging dives and surface to form groups, thereby
giving up food for safety, when exposed to sounds of
mammal-feeding killer whales (Orcinus orca).

THE CONTINGENCY OF RISK EFFECTS

The threat of predation often induces behavioral
modification (e.g., avoidance and increased vigilance)
that reduces prey foraging investment.”**3 Conse-
quently, predator presence is generally assumed to
benefit species serving as food for prey. Growing
evidence suggests, however, that this assumption
may not always be valid and that prey responses
to predators—and, therefore, the strength of risk
effects—instead vary with context.!®?1:23:5%  For
example, recent studies in a terrestrial old-field
ecosystem show that grasshopper responses to spi-
der predators depend on whether the spiders are
active (roving) or sit-and-wait (ambush) hunters.”’
Ambush spiders leave persistent, point-source cues
of predation risk, to which herbivorous grasshoppers
can respond with chronic habitat shifts, whereas
roving spiders do not leave such cues. Consequently,
ambush spiders indirectly benefit nutritious grasses by
inducing grasshoppers to shift their foraging activity
to less preferred plant species, whereas roving spiders
do not trigger habitat shifts. Instead, roving spiders
have stronger consumptive effects on grasshoppers
and thus differ in the kinds of indirect effects that they
exert on plants.>® A recent meta-analysis suggests that
this dichotomy in prey responses based on predator
hunting mode likely is widespread.**
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When applied to the Shark Bay ecosystem,
these results might suggest that tiger sharks, which
are roving predators, should elicit relatively little
response in their prey. As we have already discussed,
however, several prey species in this system manifest
strong behavioral responses when in the presence of
this roving predator. This disparity likely owes to the
spatial predictability of tiger shark encounter rates
in Shark Bay and the capacity of many of its prey
species to reduce their probability of shark mortality
through spatial shifts.?! That is, the grasshoppers
studied by Schmitz and coworkers are found in a rela-
tively homogeneous landscape where encounters with
roving spiders are unpredictable. Conversely, tiger
sharks in Shark Bay are found in a patchy landscape
where they prefer shallow, seagrass-covered banks
to deeper water.>> Thus, some prey species (e.g.,
bottlenose dolphins and dugongs) avoid tiger sharks
by spending less time in shallow habitats.***8 Inter-
estingly, tiger sharks also prefer peripheral (edges) to
central (interiors) portions of seagrass meadows.’’
As a result, some prey species (e.g., olive-headed
sea snakes) foraging over these meadows increase
their use of interiors when confronted with tiger
shark risk.2#*5 Others (e.g., bottlenose dolphins and
dugongs), however, actually spend more time foraging
along seagrass meadow edges when threatened by
sharks because their mode of escape (subsurface flight
into deep water) confers the best overall probability of
surviving a shark attack in this microhabitat despite
lower predator encounter rates in interiors.**-%

The combined insight of studies from aquatic
and terrestrial domains and both small-scale experi-
ments and large-scale observational studies suggests
that predator risk effects and resulting indirect effects
are influenced by a three-way interaction between the
hunting mode of the predator, the escape tactic of the
prey, and physical features of the landscape in which
the encounter takes place.?’?® Consistent with the
work on spider predators by Schmitz, prey responses
are indeed contingent on predator hunting mode.
Our marine studies suggest, however, that roving
predators can nevertheless trigger antipredator behav-
ior and risk effects on communities that cascade to
primary producer communities and perhaps beyond’”
if landscape heterogeneity creates spatial variability in
the effectiveness of prey escape responses. Although
more work is needed to establish its generality across
eco-domains, this framework is supported by studies
in both aquatic and terrestrial systems. For example,
roving adult perch (Perca fluviatilis) predators elicit
divergent spatial shifts by juvenile perch (into open
water) and roach (Rutilus rutilus) (into cover), pre-
sumably because different parts of the environment
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offer an escape advantage for these two prey species.’®

Similarly, in stream pools, differential responses of
herbivorous minnows (Campostoma anomalum) and
crayfish (Orconectes virilis) to predatory largemouth
bass (Micropterus salmoides) propagated variable
indirect effects on algae.”” Namely, antipredator
responses by minnows, which shoal as a defense
against bass, triggered whole-pool increases in algal
height. In contrast, defensive responses by crayfish,
which hide in burrows when threatened, led to
increases in algal height that were concentrated along
pool edges. Finally, on the Alberta prairie, Lingle®®
showed that roving coyotes (Canis latrans) trigger
spatial shifts by mule deer (Odocoileus hemionus) and
white-tailed deer (Odocoileus virginianus) that are
explained by prey escape behavior. Specifically, mule
deer shift to broken terrain, where their escape tactics
(active defense and bounding) are facilitated, whereas
white-tailed deer shift to gentle terrain, where their
sprinting escape tactic is most effective.

THE IMPORTANCE OF
STATE-DEPENDENT RISK TAKING

According to state-dependent risk-taking theory,
prey individuals experiencing resource shortages or
low energy reserves should invest less in safety to
avoid starvation or reduced reproductive potential
and, therefore, suffer higher predation rates than con-
specifics with greater energy stores.®!®? This idea took
hold in terrestrial field studies relatively early on. For
example, Sinclair and Arcese*! found that reductions
in food supply on the African Serengeti appear to lead
wildebeest (C. taurinus) to increase foraging risks and,
as a result, succumb more frequently to lion (Panthera
leo) predation. More recently, this framework has
been applied and supported in large-scale aquatic
ecosystems. For example, using whole-lake experi-
ments, Biro et al.®3 showed that food addition led to
decreased risk taking and—owing to lower predation
rates—68% higher survival in age-0 rainbow trout
(Oncorbynchus mykiss). Furthermore, inspired in part
by Sinclair and Arcese*! and mesocosm experiments
involving larval amphibians by Anholt and Werner,®*
theoretical simulations have predicted that a decline of
near-surface fatty fish (e.g., herring Clupea palassi) in
Prince William Sound, and therefore reduced energy
stores, would induce Steller sea lions (Eumetopias
jubatus) and harbor seals (Phoca vitulina) to increase
their risk taking by making more deep foraging dives,
thereby incurring higher predation rates inflicted
by deep-dwelling Pacific sleeper sharks (Sommniosus
pacificus).3% Their findings also prompted research
in Shark Bay showing that green turtles (Chelonia
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mydas) in poor condition spend a large proportion
of their foraging time over the interior portions of
shallow seagrass meadows, where they can access
high-quality seagrass but are subject to a heightened
risk of mortality from tiger sharks.®® Conversely,
green turtles in good physical condition, which make
up most of the local population, forage primarily
along the periphery of seagrass meadows where
escape from tiger sharks into deep water is facilitated.
By implication, much of Shark Bay’s seagrass is little
used by green turtles because tiger sharks render it
too dangerous to exploit, and therefore both food
and predation by sharks control the number of green
turtles in the ecosystem.

The general insight that emerges from integrat-
ing research on state-dependent risk taking in differ-
ent eco-domains is twofold. First, resource declines
or chronic resource limitation (i.e., bottom-up forces)
could reduce levels of antipredator investment within
populations of large consumers by depressing aver-
age condition and, as a result, indirectly increase
direct predation rates (i.e., top-down forces) experi-
enced by these populations,!8-35:41.61.64.65 Recently, for
example, a long-term decline in food supply has been
invoked to explain increased risk taking and preda-
tion mortality in the marine bivalve (Macoma balth-
ica).%” Interestingly, this same scenario (termed the
‘Stalingrad’ effect)®® could be unfolding in the Greater
Yellowstone Ecosystem, where a recent study during
a period of prolonged drought and nutrient limita-
tion found only modest evidence for costly antipreda-
tor investment in elk (Cervus elaphus) relative to
earlier investigations.®® More broadly, among herbi-
vores at least, terrestrial species are more likely to be
nutrient limited and require high-quality forage than
their aquatic counterparts.”? Consequently, under this
state-dependent risk-taking model, herbivores in ter-
restrial systems may be forced into riskier foraging
decisions, and thereby suffer higher predation rates,
than those in aquatic environments. If, on the other
hand, levels of antipredator investment remain sta-
ble despite long-term resource declines, then large
consumer populations could be depressed through
declines in state-dependent reproductive rates (e.g.,
Ref 71). Thus, in both aquatic and terrestrial sys-
tems, a dichotomous ‘top-down versus bottom-up’
approach that invokes either direct predation or
resource quality as the sole driver of consumer densi-
ties and community properties may be flawed. Second,
because of the dynamic interplay between consumer
condition, risk taking, and vulnerability to preda-
tion, predators are more likely to affect consumer
populations predominantly through the interaction
between risk and consumptive effects, rather than by
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consumptive effects or risk effects alone!®*” (see also

Refs 14 and 16). For example, predators can depress
prey populations solely via prey starvation stemming
from antipredator investment or via the combination
of risk-induced starvation and increased predation on
risk-prone individuals in compromised condition.*”

DIFFERENCES BETWEEN AQUATIC
AND TERRESTRIAL RISK EFFECTS

Another potential benefit of cross-fertilization is
the opportunity to identify fundamental differences
between freshwater aquatic, marine, and terrestrial
realms that might lead to divergent risk effects or
variation in their relative importance in population
and community dynamics. A recent cross-system
comparison of predator-prey body-mass ratios, for
example, suggests that size constraints on trophic
interactions are weaker in terrestrial than in aquatic
systems. In an aquatic medium that lacks hard sur-
faces, prey not swallowed whole are likely to sink or
be swept away and lost.”> By implication, size con-
straints on the nonconsumptive effects of gape-limited
aquatic predators may be more pronounced than
those on terrestrial predators. Furthermore, some
top aquatic predators are highly mobile and migrate
seasonally while their prey species remain within
the same area year-round (e.g., tiger sharks in Shark
Bay”?). As a result, nonmigratory aquatic prey species
may experience ‘risk-released’ conditions for greater
periods of time than their counterparts in terrestrial
systems, where top predators are often more closely
tied to localized patterns of prey abundance (e.g., gray
wolves’#). Terrestrial systems with seasonally migrat-
ing avian predators, on the other hand, could serve
as an interesting basis for comparison of the effects
of periodic risk release in aquatic and terrestrial envi-
ronments. Many aquatic predators, including sharks,
exhibit indeterminate growth and ontogenetic dietary
shifts. Accordingly, a research approach that tran-
scends ecosystem boundaries would help to determine
whether metrics such as body size and trophic level
might be more informative than terrestrial-derived
ways of categorizing the risk effects, and ecological
roles, of predators (i.e., apex- and mesopredation).”?
Finally, open-water systems are by nature three
dimensional and usually lack complete refuges, thus
requiring antipredator behaviors that differ from
those in structured coastal marine (e.g., coral or rocky
reefs), freshwater, and terrestrial environments where
complete refugia are available. Antipredator behavior
that may apply to open-water systems (e.g., group
formations or movement patterns that confuse preda-
tors or dilute risk?®), in turn, may offer insights into
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the kinds of antipredator behavior we might expect
to observe in benthic, littoral, and terrestrial systems
where habitat structure is poorly defined.

BOX 1

CONCLUSION

Cross-fertilization of research in terrestrial, freshwa-
ter, and marine ecosystems has long enhanced our
understanding of antipredator behavior and its eco-
logical consequences. Hamilton’s! seminal work (our
opening example) recognized that the antipredator
benefits of shoaling by fish in open-water habitats
are analogous to those of group formation by social
species in open, terrestrial environments. Hamilton’s
selfish herd hypothesis continues to inform our under-
standing of animal group formation. For example,
predatory attacks by free-ranging white sharks (Car-
charodon carcharias) on Cape fur seal (Arctocephalus
pusillus) decoys (i.e., simulated prey) matched Hamil-
ton’s prediction that tighter interindividual distances
reduce predation risk for individual members of a
group.8? Many studies of risk effects and other eco-
logical phenomena, however, have underutilized the
potential benefits of thinking beyond the confines of
their focal eco-domain.*1213

We have highlighted general insights into the
risk effects of predators that have emerged, at least
in part, from cross-system comparison, arguing for
broader conceptual exchange across the land—water
divide. Our review suggests that aquatic ecology (and
especially research in systems lacking well-defined
habitat structure) can benefit from a greater appreci-
ation of (1) the general importance of risk effects, (2)
the potential influence of predator hunting mode on
antipredator behavior, and (3) the expectation that
mesopredators, not unlike herbivores, also respond
behaviorally to predation risk. Terrestrial ecologists,
on the other hand, would benefit from the idea that
prey with different escape tactics could respond dif-
ferently to the same predator and even show opposite
patterns of spatial shifts.2->3 Furthermore, researchers
from both realms will gain from insight into the fac-
tors that could differentiate risk effects in the water
and on land, including visibility (Box 1). Therefore,
synergy between marine and terrestrial ecologists
should yield a broader framework for understand-
ing and predicting the effects of predation risk on
prey behavior and the dynamics of communities and
ecosystems.
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